Process Mining: Fuzzy Clustering and Performance Visualization

نویسندگان

  • Boudewijn F. van Dongen
  • Arya Adriansyah
چکیده

The goal of performance analysis of business processes is to gain insights into operational processes, for the purpose of optimizing them. To intuitively show which parts of the process might be improved, performance analysis results can be projected onto process models. This way, bottlenecks can quickly be identified and resolved. Unfortunately, for many operational processes, good models, describing the process accurately and intuitively are unavailable. Process mining, or more precisely, process discovery, aims at deriving such models from events logged by information systems. However many mining techniques assume that all events in an event log are logged at the same level of abstraction, which in practice is often not the case. Furthermore, many mining algorithms produce results that are hard to understand by process specialists. In this paper, we propose a simple clustering algorithm to derive a model from an event log, such that this model only contains a limited set of nodes and edges. Each node represents a set of activities performed in the process, but many nodes can refer to many activities and vice versa. Using the discovered model, which represents the process at a potentially high level of abstraction, we present two different ways to project performance information onto it. Using these performance projections, process owners can gain insights into the process under consideration in an intuitive way. To validate our approach, we apply our work to a real-life case from a Dutch municipality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Requirements Elicitation as a Case of Social Process: An Approach to Its Description

Analyzing Resource Behavior Using Process Mining p. 69 Mobile Workforce Scheduling Problem with Multitask-Processes p. 81 Understanding Spaghetti Models with Sequence Clustering for ProM p. 92 Flexible Multi-dimensional Visualization of Process Enactment Data p. 104 Autonomous Optimization of Business Processes p. 116 Activity Mining by Global Trace Segmentation p. 128 A Formal Model for Proces...

متن کامل

Fuzzy clustering of time series data: A particle swarm optimization approach

With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because o...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

Developing a Course Recommender by Combining Clustering and Fuzzy Association Rules

Each semester, students go through the process of selecting appropriate courses. It is difficult to find information about each course and ultimately make decisions. The objective of this paper is to design a course recommender model which takes student characteristics into account to recommend appropriate courses. The model uses clustering to identify students with similar interests and skills...

متن کامل

Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods

Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...

متن کامل

ROLE OF DATA MINING TECHNIQUES IN EDUCATIONAL AND e-LEARNING SYSTEM

The aim of this research is to provide an up-to-date snapshot of the current state of research and applications of Data Mining methods in education and e-learning process. Educational data mining concerned with developing methods for discovering knowledge from educational domain. Use of data mining algorithms can help discovering pedagogically relevant knowledge contained in databases obtained ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009